Tip-enhanced Raman spectroscopy for the characterization of biological systems : From nanoscale chemical and structural imaging in air to its development in liquid media
Spectroscopie Raman exaltée de pointe pour la caractérisation de systèmes biologiques : de l'imagerie chimique et structurale nanométrique à l’air à son développement en milieu liquide
Résumé
The aims of this thesis are the development of tip-enhanced Raman spectroscopy (TERS) for applications in liquid media, specifically for the study of lipid membranes and amyloid proteins which are implicated in neurodegenerative diseases like Alzheimer’s. TERS overcomes the diffraction limit of conventional Raman spectroscopy by combining the high spatial resolution of scanning probe microscopy with the chemical specificity of surface-enhanced Raman spectroscopy (SERS). By employing a metal-coated nano-tapered scanning probe microscopy probe tip, TERS generates a localised enhancement of the Raman signal at the tip apex. This enables the study of optically non-resonant biomolecules at the nanoscale in a label-free and non-destructive manner. The key challenges that are addressed in this work include the fabrication of TERS-active tips, the optimisation of our novel total-internal reflection (TIR)-TERS system for use in liquid environments, and the handling of the complex data obtained from hyperspectral TERS imaging. Amyloid proteins in the form of Tau fibrils were studied using this TIR-TERS setup with heparin-induced Tau fibrils being a benchmark for evaluating the performance of the system. TERS studies of RNA-induced Tau fibrils provided insight into the underlying formation mechanisms of amyloid fibrils. In addition, these data were used to explore the use of chemometric methods, such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), for their fine analysis. These methods were evaluated in the context of more traditional peak-picking methods. This thesis also details the development of a liquid-compatible TIR-TERS system and its application to the study of supported lipid bilayers in aqueous media. This advancement enables the nanoscale investigation of lipid membranes in biologically relevant media, which is more representative compared to TERS in air. With the outlook of future works investigating protein-lipid interactions, these innovations are crucial for understanding amyloid fibril formation and their deleterious effects on neuronal cells. To conclude, this thesis enhances TERS as a tool for studying biomolecular structures in the context of neurodegenerative diseases at the nanoscale, and the optimised TIR-TERS system provides a platform for future research in biological and biomedical applications.
Cette thèse a pour objectif le développement de la spectroscopie Raman exaltée de pointe (TERS) pour des applications en milieux liquides, et plus particulièrement pour l’étude de membranes lipidiques et de protéines amyloïdes qui sont impliquées dans des maladies neurodégénératives comme la maladie d’Alzheimer. La TERS s’affranchit de la limite de diffraction de la spectroscopie Raman conventionnelle en combinant la haute résolution spatiale de la microscopie à sonde locale et la spécificité chimique de la spectroscopie Raman exaltée de surface (SERS). En utilisant une pointe de microscope à sonde locale métallisée et effilée au niveau nanométrique, la TERS génère une exaltation localisée du signal Raman au sommet de la pointe. Ceci permet l’étude de biomolécules optiquement non-résonnantes à l’échelle nanométrique sans marquage moléculaire et de manière non-destructive. Les défis clés qui sont traités dans ce travail incluent la fabrication de pointes actives en TERS, l’optimisation d’un nouveau système TERS en réflexion totale interne (RTI) pour des utilisations en environnements liquides, et l’exploitation de données complexes obtenues par imagerie TERS hyperspectrale. Des protéines amyloïdes sous forme de fibrilles de protéine Tau ont été étudiées au moyen de notre instrument de RTI-TERS en prenant des fibrilles induites par de l’héparine comme référence pour évaluer la performance du système. Des études TERS de fibrilles Tau induites par de l’ARN ont donné un aperçu des mécanismes de formation sous-jacents des fibrilles amyloïdes. Par ailleurs, ces données ont été utilisées pour explorer le potentiel des méthodes chimiométriques, telles que l’Analyse en Composantes Principales (ACP) et l’Analyse en Cluster Hiérarchique (ACH), pour leur analyse fine. Ces méthodes ont été évaluées dans le contexte des méthodes plus traditionnelles de sélection de pics individuels. Cette thèse détaille aussi le développement d’un système RTI-TERS compatible avec le milieu liquide et son application à l’étude de bicouches lipidiques supportées en milieux aqueux. Cette avancée permet la caractérisation nanométrique de membranes lipidiques dans des milieux biologiquement pertinents et plus réalistes que l’air. Dans la perspective de futurs travaux examinant les interactions protéines-lipides, ces innovations sont cruciales pour comprendre la formation des fibrilles amyloïdes et leurs effets délétères sur les cellules neuronales. Au final, cette thèse a amélioré la TERS en tant qu’outil pour étudier les structures biomoléculaires à l’échelle nanométrique dans le contexte des maladies neurodégénératives, et le système RTI-TERS optimisé fournit une plateforme pour de futures recherches dans des applications biologiques et biomédicales.
Origine | Version validée par le jury (STAR) |
---|