Loading...
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351
A partir de cette page, vous pouvez :
- Accéder au site de la Bibliothèque du laboratoire
- Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
- Déposer des publications sur HAL ou sur HAL Université Côte d'Azur
DERNIERS DÉPÔTS
NOMBRE DE DOCUMENTS
3 671
NOMBRE DE NOTICES
1 998
EVOLUTION DES DÉPÔTS
RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT
Open Access LJAD
80 %
Mots clés
Operads
Model selection
Fractional BV spaces
Bifurcation theory
Finite Volume
Control
Metasurface
Fluid-structure interaction
Inverse problem
Nanophotonics
Complexity
Excursion sets
Euler equations
Machine learning
Operad
Hawkes process
Dynamical systems
Shallow water
Discontinuous Galerkin methods
Automatic differentiation
Classification
Finite element method
Deep learning
VOLUMES FINIS
Finite volume schemes
Small divisors
Plasma equilibrium
Finite volume
Convergence
Normal forms
Inverse problems
Parallel computing
Scalar conservation laws
Asymptotic analysis
Domain decomposition
Controllability
Finite element
Density estimation
Optimization
Finite volume method
Mathematical model
Hyperbolic systems
Partial differential equations
Consistency
Discontinuous Galerkin method
Simulation
Segmentation
Stability
Stabilité
Conservation laws
Friction
Convergence analysis
Microwave imaging
Bifurcations
Water waves
Clustering
Volumes finis
Chaos
Finite elements
Discontinuous Galerkin
Memristor
Modeling
Optimal control
Overland flow
Maxwell's equations
Tokamak
Interpolation
Co-clustering
Finite volumes
Finite volume scheme
Cryptography
Shallow water equations
Chua attractor
Maxwell equations
Adaptive estimation
Finite volume methods
Harmonic numbers
Energy conservation
Aerodynamics
Large deviations
Modélisation
Équations de Maxwell
Turbulence
Optimisation
PDE
Macroscopic traffic flow models
Rheology
Boundary conditions
Game theory
Hydrostatic reconstruction
Bifurcation
Numerical simulation
Numerical analysis
Blow-up
Shape optimization
Modelling
Interacting particle systems
Wave propagation
Cauchy problem
Solitary waves